= Suggestion
 Chapter P
 Section P. 1

Notation

We will begin by refreshing your knowledge of College Algebra (Math 111) quickly. First, a reminder of some terms:

Definitions

A set is a collection of objects or elements. The set containing the numbers 1,2 , and 3 is written as $\{1,2,3\}$. If there is an obvious pattern, we use three dots $\{1,2,3, \cdots\}$. instead since numbers and In suggesting

Natural Numbers

Whole Numbers

Integers

$$
\begin{aligned}
\mathbb{Z} & =\{\cdots,-3,-2,-1,0,1,2,3, \cdots\} \\
\mathbb{Q} & =\left\{\left.\frac{a}{b} \right\rvert\, a \text { and } b \text { are integers with } b \neq 0\right\}
\end{aligned}
$$

Irrationals: Any number on a number line that can not be expressed as a rational number.
Real Numbers: Everything on a number line, i.e. every rational and irrational number. The notation for the real numbers is \mathbb{R}.

Note: Any number in decimal notation that is terminating or repeating is a rational number. The irrational numbers are infinite, non-repeating numbers.
Task 1. Write all of the above sets that contain the following numbers.
i. 0
iii. $\frac{3}{-7}$
ii. -5
iv. $\frac{\pi}{7}-$ seriming when whir

Task 2. Of the sets described above, which sets contain which other sets?

Task 3. Let us practice a few of our numerical operations to make sure we understand. Without using a calculator, determine if the following are equal.
(7)
goop tuns beni. $1-(2-3)=(1-2)-3$

ii. $2-7=-(7-2)$

iii. $a-b=-(b-a)$
rewording:

following Tie or False?

Add why/ why not?? a reason why not?
iv. $(1 \div 2) \div 3=1 \div(2 \div 3)$

False
v. $(3+4)^{2}=9+16$

False
vi. $(a+b)^{2}=a^{2}+b^{2}$

False

Absolute Value

The absolute value of a (written $|a|$) can be thought of as the distance from a to 0 on the number line. Symbolically we define the absolute value as

$$
|a|= \begin{cases}a & : a \geq 0 \\ -a & : a<0\end{cases}
$$

Properties of Absolute Value: For any real numbers a and b
i. $|a| \geq 0$
iii. $|a \cdot b|=|a| \cdot|b|$
ii. $|-a|=|a|$
iv. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$ provided $b \neq 0$

Distance between Two Points on the Number Line: If a and b are any two points on the number line, then the distance between a and b is $|a-b|$. In symbols, $d(a, b)=|a-b|$.
Example: Find the distance between -3 and 5 on the number line.

Task 4. For any real numbers a and b, is it true that $|a-b|=a-b$? Why or why not?

Not True

$$
|2-3|=|-1|=1 \neq 2-3=-1
$$

Problem 1. As review, add, subtract, multiply, or divide the rational numbers as indicated. Write answers in lowest terms.
(a) $\frac{8}{15}+\frac{4}{15}=\frac{12}{15}=\frac{4}{5}$
(c) $\frac{3}{4}-\frac{5}{6}=\frac{9-10}{12}=\frac{-1}{12}$
(e) $\frac{4}{21} \cdot \frac{7}{10}=\frac{2}{15}$
(g) $\frac{5}{6} \div \frac{14}{15}=\frac{5}{6} \cdot \frac{15}{14}=\frac{25}{28}$
(b) $\frac{5}{6}-\frac{8}{9}=\frac{15-16}{18}=\frac{-1}{18}$
(d) $\frac{3}{10}-\frac{7}{15}=\frac{9-14}{30}=\frac{-5}{30}=\frac{-1}{6}$ (f) $\frac{5}{9} \cdot \frac{12}{25 \cdot l \cdot 2} \begin{gathered}4 \cdot 2 \\ 25\end{gathered}$

(h) $\frac{2}{3} \div \frac{8}{9}=\frac{\pi}{5} \cdot \frac{8}{8} \frac{9^{3}}{8}=\frac{3}{4}$
6
2
2

